China Good quality Good Price Semi Trailer Parts Trailer Mover Drum Axle Suspension Inboard Outboard Drum Axle axle bolt

Product Description

Oil Lubrication American Axle 13T  77.5 71.5 For South America Customer Semi Trailer Parts

Product Description

Model  Capacity Brake Distance of Brake Chamber(L4)  Axle Tube Center Distance of Spring Seat(L3) Stud P.C.D (D1) Seam Allowance D2 Track(mm) L2 Total Length (mm) L1

Weight

(kg)

Recommend Wheel
ZY-A1045 13 420*180 390 φ127 ≥970 10-M22*1.5 285.8 221.8 1840 2180 360 7.50V-20
ZY-A1046 13 420*180 382 φ127 ≥970 10-M22*1.5 335 280.8 1840 2180 345 7.50V-20
ZY-A1047 13 420*180 385 150 ≥930 10-M22*1.5 285.8 220.8 1840 2180 360 7.50V-20
ZY-A1048 13 420*180 382 150 ≥930 10-M22*1.5 335 280.8 1840 2180 340 7.50V-20
ZY-A1049 14 420*220 350 150 ≥930 10-M22*1.5 335 280.8 1840 2180 358 7.50V-20
ZY-A1052 16 420*220 350 φ127 ≥980 10-M22*1.5 335 280.8 1850 2200 360 8.0V-20
ZY-A1053 16 420*220 350 150 ≥940 10-M22*1.5 335 280.8 1850 2200 390 8.0V-20
ZY-A1054 20 420*220 345 150 ≥940 10-M24*1.5 335 280.8 1850 2256 430 8.0V-20
ZY-A1055 25 420*220 345 150 ≥940 10-M24*1.5 335 280.8 1850 2270 475 8.0V-20

 

Detailed Photos

1. Special heat treatment, low alloy steel axle beam, good comprehensive performance, strong bearing capacity, low dead weight;

2. High quality alloy solid spindle provides superior fatigue resistance through integral heat treatment;

3. Camshaft adopts special sealing processing to ensure that grease will not enter the brake drum, which is more safe;

4. New tight fit wheel hubcap, O-ring seal, good sealing performance; 5. Extend the free maintenance time

Advantages

 

Company Profile

Located in Xihu (West Lake) Dis. Industrial Zone, ZHangZhou was evaluated as the National High-Tech Enterprise In 2014, and our trademark was rated as ZheJiang Famous Brand. We have built an engineering technology research center for transport vehicle suspension system of HangZhouCity. Our company has 12 items of National patent technology, and undertook a number of provincial and municipal projects, A number of our products were rated as municipal and county science and technology progress award. In March 2016, as the sponsor, ZHangZhou united 27 enterprises with ZheJiang University of Science and Technology, ZheJiang University of Technology, ZheJiang Jiaotong University and other 5 universities, to set up a intellectual property protection alliance for special vehicle industry in ZheJiang province , playing a great role in ZheJiang special vehicle industry to promote scientific and technological innovation, intellectual property protection.

 

There are more than 100 sets variety of production and processing equipments in our company, including suspension automatic welding system which save human resource and improve production efficiency, while significantly improve products quality. ZHangZhou has passed ISO9001, ISO140001, OHSAS18001 management system certification and the standardization of intellectual property management certification. We have integrated testing equipments in a testing center, with advanced testing methods, we can control every link from raw materials, semi-finished products to finished products, to ensure that our customers can get consistent quality products.

Packaging & Shipping

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: High Quality
Condition: New
Axle Number: 2 Axle,3 Axle,4 Axle
Application: Trailer
Certification: CE, DIN, ISO
Material: Steel
Samples:
US$ 700/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What are the safety considerations when working with axles, especially during repairs?

Working with axles, especially during repairs, requires careful attention to safety to prevent accidents and injuries. Here are some important safety considerations to keep in mind when working with axles:

1. Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment, including safety goggles, gloves, and steel-toed boots. PPE helps protect against potential hazards such as flying debris, sharp edges, and accidental contact with heavy components.

2. Vehicle Stability:

Ensure that the vehicle is on a stable and level surface before working on the axles. Engage the parking brake and use wheel chocks to prevent unintended vehicle movement. The stability of the vehicle is crucial to maintain a safe working environment.

3. Lifting and Support:

Use proper lifting equipment, such as hydraulic jacks or vehicle lifts, to raise the vehicle safely. Follow the manufacturer’s guidelines for lifting points and weight capacities. Once the vehicle is lifted, support it securely with jack stands or other appropriate supports to prevent it from falling or shifting during repairs.

4. Lockout/Tagout:

If the repair work involves disconnecting or removing any electrical or mechanical components that could cause the axle or wheels to move, follow lockout/tagout procedures. This involves locking and tagging out the power source, so it cannot be accidentally energized while work is being performed.

5. Proper Tools and Equipment:

Use the correct tools and equipment for the job. Using improper tools or makeshift methods can lead to accidents and damage to the axle or surrounding components. Follow the manufacturer’s instructions and recommended procedures for disassembling, repairing, and reassembling the axle.

6. Proper Torque and Tightening:

When reassembling the axle components, use a torque wrench to ensure that fasteners are tightened to the manufacturer’s specifications. Over-tightening or under-tightening can lead to component failure or damage. Follow the recommended torque values provided by the vehicle manufacturer.

7. Safe Handling of Heavy Components:

Axle components can be heavy and cumbersome. Use appropriate lifting techniques and equipment, such as hoists or lifting straps, to safely handle heavy axle parts. Avoid lifting heavy components alone whenever possible and ask for assistance when needed.

8. Proper Disposal of Fluids and Waste:

If the repair involves draining fluids from the axle, such as differential oil, ensure proper disposal according to local regulations. Use appropriate containers to collect and store fluids and dispose of them at authorized collection points.

9. Training and Experience:

Working with axles requires knowledge and experience. If you are unfamiliar with axle repairs, consider seeking assistance from a qualified mechanic or technician who has the necessary training and expertise. If you decide to perform the repairs yourself, ensure that you have the appropriate knowledge and skills to carry out the task safely.

By following these safety considerations, you can help minimize the risk of accidents, injuries, and damage when working with axles, ensuring a safe working environment for yourself and others involved in the repair process.

axle

Can you provide insights into the advancements in axle technology in recent years?

In recent years, there have been significant advancements in axle technology to enhance performance, efficiency, and safety in vehicles. Here are some insights into the key advancements:

  1. Lightweight Materials:
  2. One notable advancement is the use of lightweight materials in axle construction. Manufacturers have increasingly utilized materials such as aluminum alloys and high-strength steels to reduce the weight of axles without compromising strength and durability. Lighter axles contribute to improved fuel efficiency and overall vehicle performance.

  3. Electronic Differential:
  4. Electronic differentials, also known as eDiffs, have gained popularity in recent years. They utilize sensors, actuators, and control algorithms to monitor and distribute torque between the wheels more efficiently. Electronic differentials enhance traction, stability, and handling by actively managing torque distribution, especially in vehicles equipped with advanced stability control systems.

  5. Advanced Axle Bearings:
  6. Axle bearings have seen advancements in design and materials to reduce friction, improve efficiency, and enhance durability. For example, the use of roller bearings or tapered roller bearings has become more prevalent, offering reduced frictional losses and improved load-carrying capacity. Some manufacturers have also introduced sealed or maintenance-free bearings to minimize maintenance requirements.

  7. Electric Axles:
  8. With the rise of electric vehicles (EVs) and hybrid vehicles, electric axles have emerged as a significant technological advancement. Electric axles integrate electric motors, power electronics, and gear systems into the axle assembly. They eliminate the need for traditional drivetrain components, simplify vehicle packaging, and offer benefits such as instant torque, regenerative braking, and improved energy efficiency.

  9. Active Suspension Integration:
  10. Advancements in axle technology have facilitated the integration of active suspension systems into axle designs. Active suspension systems use sensors, actuators, and control algorithms to adjust the suspension characteristics in real-time, providing improved ride comfort, handling, and stability. Axles with integrated active suspension components offer more precise control over vehicle dynamics.

  11. Improved Sealing and Lubrication:
  12. Axles have seen advancements in sealing and lubrication technologies to enhance durability and minimize maintenance requirements. Improved sealing systems help prevent contamination and retain lubricants, reducing the risk of premature wear or damage. Enhanced lubrication systems with better heat dissipation and reduced frictional losses contribute to improved efficiency and longevity.

  13. Autonomous Vehicle Integration:
  14. The development of autonomous vehicles has spurred advancements in axle technology. Axles are being designed to accommodate the integration of sensors, actuators, and communication systems necessary for autonomous driving. These advancements enable seamless integration with advanced driver-assistance systems (ADAS) and autonomous driving features, ensuring optimal performance and safety.

It’s important to note that the specific advancements in axle technology can vary across different vehicle manufacturers and models. Furthermore, ongoing research and development efforts continue to drive further innovations in axle design, materials, and functionalities.

For the most up-to-date and detailed information on axle technology advancements, it is advisable to consult automotive manufacturers, industry publications, and reputable sources specializing in automotive technology.

axle

How do solid axles differ from independent axles in terms of performance?

When comparing solid axles and independent axles in terms of performance, there are several key differences to consider. Both types of axles have their advantages and disadvantages, and their suitability depends on the specific application and desired performance characteristics. Here’s a comparison of solid axles and independent axles:

Aspect Solid Axles Independent Axles
Load-Bearing Capability Solid axles have high load-bearing capability due to their robust and sturdy construction. They can handle heavy loads and provide excellent stability, making them suitable for off-road vehicles, heavy-duty trucks, and towing applications. Independent axles typically have lower load-bearing capability compared to solid axles. They are designed for lighter loads and offer improved ride comfort and handling characteristics. They are commonly used in passenger cars, sports cars, and vehicles with a focus on maneuverability and road performance.
Wheel Articulation Solid axles have limited wheel articulation due to their connected and rigid design. This can result in reduced traction and compromised wheel contact with the ground on uneven terrain. However, solid axles provide excellent traction in situations where the weight distribution on all wheels needs to be maintained, such as in off-road or rock-crawling applications. Independent axles offer greater wheel articulation as each wheel can move independently of the others. This allows the wheels to better conform to uneven terrain, maximizing traction and maintaining contact with the ground. Independent axles provide improved off-road capability, enhanced handling, and better ride comfort.
Ride Comfort Due to their rigid design, solid axles generally provide a stiffer and less compliant ride compared to independent axles. They transmit more road shocks and vibrations to the vehicle’s occupants, resulting in a rougher ride quality. Independent axles are known for providing better ride comfort. Each wheel can react independently to road imperfections, absorbing shocks and vibrations more effectively. This leads to a smoother and more comfortable ride, particularly on paved roads and surfaces with minor irregularities.
Handling and Stability Solid axles offer excellent stability due to their connected nature. They provide better resistance to lateral forces, making them suitable for high-speed stability and towing applications. However, the rigid axle design can limit overall handling and maneuverability, particularly in tight corners or during quick direction changes. Independent axles generally offer improved handling and maneuverability. Each wheel can react independently to steering inputs, allowing for better cornering performance and agility. Independent axles are commonly found in vehicles where precise handling and responsive steering are desired, such as sports cars and performance-oriented vehicles.
Maintenance and Repair Solid axles are relatively simpler in design and have fewer moving parts, making them easier to maintain and repair. They are often more resistant to damage and require less frequent servicing. However, if a component within the axle assembly fails, the entire axle may need to be replaced. Independent axles are typically more complex in design and have multiple moving parts, such as control arms, CV joints, or bearings. This complexity can result in higher maintenance and repair costs. However, if a failure occurs, only the affected component needs to be replaced, reducing repair expenses compared to replacing the entire axle.

It’s important to note that advancements in suspension and axle technologies have resulted in various hybrid systems that combine features of solid and independent axles. These systems aim to provide a balance between load-bearing capability, wheel articulation, ride comfort, and handling performance based on specific application requirements.

In summary, solid axles excel in load-bearing capability, stability, and durability, making them suitable for heavy-duty applications and off-road conditions. Independent axles offer improved ride comfort, better wheel articulation, enhanced handling, and maneuverability, making them suitable for passenger cars and vehicles focused on road performance. The choice between solid axles and independent axles depends on the specific needs and priorities of the vehicle or machinery.

China Good quality Good Price Semi Trailer Parts Trailer Mover Drum Axle Suspension Inboard Outboard Drum Axle   axle boltChina Good quality Good Price Semi Trailer Parts Trailer Mover Drum Axle Suspension Inboard Outboard Drum Axle   axle bolt
editor by CX 2024-04-24